Results: First, computer simulations with a 7-chip m-sequence
were performed to prove the applicability of the analysis. In the
simulations 40000 code periods were used in equal power two-
path channels and the complex gains of both paths were randomly
changed every 50 code periods. When comparing the theoretical
and simulated P,s and P,,s, as well as T),,s as functions of signal-
to-noise ratio E/N,, no significant difference in the results was
seen thus proving the applicability. Fig. 2 presents the theoretical
T)145 when the P, per cell is 102 when the code length is a param-
eter (N = 3, 7 and 15). The false alarm penalty time is 1007;. The
increase in T,,, due to non-ideal ACF can be calculated as A, =
100(Ts41 — Tou2) Thsa, Where Ty, and T, are the mean acquisi-
tion times obtained by using real spreading codes (m-sequence)
with non-ideal ACF, and with ideal ACF, respectively. The
increase in the worst case is now ~100% for N = 3, 20% for N =7
and < 10% for N = 15. Fig. 3 presents the increase in the case
when the P, per cell is 104, The increase in 7, can be significant
due to IPI, especially when low P, is required.

Conclusions: Multipath propagation causes intersymbol interfer-
ence in conventional narrowband communication systems and
interpath interference in spread spectrum communication systems.
In this Letter we have considered the influence of interpath inter-
ference (IPI) on the code acquisition performance. The acquisition
was performed by a matched filter. The results indicate that with
short spreading codes the effect of interpath interference can be
significant. It should be taken into account that m-sequences have
‘ideal-like’ autocorrelation functions. Their out-of-phase correla-
tion is -1, and, for example, using Gold sequences, the effect of
interpath interference can be assumed to be more significant. To
obtain exact results, numerous simulations should be performed,
due to the non-smooth ACF of Gold codes.
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Efficient quantisation method for LSF
parameters based on restricted temporal
decomposition

Sung-Joo Kim and Yung-Hwan Oh

A restricted temporal decomposition method is presented for line
spectral frequency (LSF) parameters. The proposed method
interpolates an LSF vector trajectory efficiently while conserving
the LSF ordering property. Experimental results show that
interpolated LSF parameters can be transparently quantised at a
rate of 753bit/s.

Introduction: Temporal decomposition is a speech coding method
which decomposes a given vector trajectory into a set of tempo-
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rally overlapped event functions and corresponding event vectors.
The original temporal decomposition estimates events with some
restrictions on event functions such as time localisation, but does
not consider any restriction on event vectors. This method has
been successfully applied to quantising log-area, log-area-ratio, or
cepstrum parameters [1 — 3]. However, when we apply it to
decomposing LSF parameters holding an ordering property [4], a
serious problem occurs. Some event vectors are outside of the
valid range of LSF parameters or disordered so that they cannot
be interpreted as LSF parameters. Consequently, these event vec-
tors do not have corresponding stable spectra and cannot be
quantised effectively as LSF parameters. To solve this problem,
we propose a restricted temporal decomposition (RTD) method so
that every event vector for an LSF vector trajectory preserves the
property of LSF parameters and that the vector trajectory can be
interpreted as the interpolation of the estimated events.

Restricted temporal decomposition: Let a given vector trajectory
and its corresponding sets of event vectors and functions bg ¥ =
[_l_;(l)’ ?(2)) Loty ?(N)]a A = [317 32, e 31]; and = [¢l: ¢27 it
¢ ,]7, respectively, where ¥(n) = [y, (), yy(n), ..., v, (®)]" is the LSF
vector sampled at time 7, a [a,1, a;5, ..., a;,]" the jth event vector,
and ¢; = [0, (1), ¢; (2), ..., &;(V)]” the jth event function. The tem-
poral decomposition estimates the event vectors and functions
which minimise

N
E=|Y - A2 =) |lg(n) - 7' (n)||? (1)
where ”
J
7'(n) =) d;¢,(n) 2
=1

¢,(n) is restricted to the range [0, 1] and to having maximum value
at its corresponding centre C(j). Events are ordered with respect to
their central positions. For RTD, we propose the use of an inter-
polation, eqn. 3 instead of eqn. 2, assuming that the jth event
function ¢ ;(n) has a nonzero value only for C(j— 1) <n < (G + 1)
and that the sum of all event functions is one at any time .

7' (n)=a;6;(n)+8j11¢;41(n) =@;9;(n) +@;41(1—¢;(n))
for C(j) <n<C(j+1) (3)
Substituting eqn. 3 into eqn. 1, we obtain
J=1C(j+1)—1
E=> 2
i=l n=C(j)
where C((1) =1, () =N+ 1.
To minimise the error E, ¢,(x) should be estimated using eqn. 5,

which is obtained from setting the partial derivatives of eqn. 4
with respect to ¢,(n) equal to zero:

. (F(n) = @j11), (@5 — @j41)
by = O B) @ Zen))
@5 — @1
Finally, considering the above restrictions on event functions, we
determine ¢;(n7) as

@) ~j41) — @5~z )| (4)

1~ ¢j1(n) ifC({-1) <n<C()
63(n) = 1 R if n = C(j)
d min(1,max(0, ¢;(n))) if C(j) <n < CG+1)
0 otherwise

(6)
Turning to the event vectors, we estimate them to correspond to
the determined event functions in the minimum squared error
sense by using the following formula [1 — 3]. Note that (@®7) here
is tridiagonal and easily inverted:

A=YoeT(®0T)! (7

However, the estimated event vectors may violate the ordering
property since the error criterion does not consider this property,
so if @ with a; ,, 2 a;, minimises error E, then g, ,, and a;
should be changed to a’; ,, and a’;, = a’; _, + €. Considering that
the increment of error E caused by this change is

A= (ajh-1— a5 20 (0)2 + D (ajn —a) )65 (n)?
(8)
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@’; ., should be set as follows to minimise A. Here, we use € = 0.01
empirically:

@)1 = (ajh—1 + ajx — €)/2 9

In the result, when the central positions of the events C(j), j = 1,
..., J, are known, and the corresponding event vectors are initial-
ised with the samples of the vector trajectory y(C(j)), we can cal-
culate proper event functions and vectors iteratively by using eqns.
6 and 7. We suggest using the local minimal points of the follow-
ing spectral transition measure based on LSF parameters as the
central positions of corresponding events:

2

STMLSF(H) = (10)

M
S otegn+t)
t=—M

where M = 2. However, we have experimentally determined that
the number of events found with S7TM,; (n) is ~ 10 events per
second and not enough for interpolating an LSF vector trajectory.
Therefore, we insert a new event where the initial interpolation
error e(n) = ||(n) ~ y’(m)|P has a local maximum and is larger
than the certain threshold 8. For online analysis, we segment the
input vector trajectory and perform the RTD of each segment
sequentially. A segment can be bounded by two event centres
found with STM, 4{n). Since an event function is overlapped by
its adjacents, the last event of each segment should be re-estimated
with the following segment. The whole RTD algorithm is summa-
rised as follows.

Step 1. initialise (1) « 1, d, « (1), and J2

Step 2: find C(J), the next local minimum point of STM,{n),
which will be the end of the current segment; set @, < y(C(J))
Step 3: estimate the initial event functions ?p: corresponding to the
current set of event vectors using eqn. 6; note that no iteration is
needed for this step

Step 4: if max, (e(n)) > 6, insert an event as J « J + 1, C(J) «
argmax, (e(n)), d, « y(C(J)), and reorder the events by their cen-
tral positions, then go back to step 3

Step 5. re-estimate the event vectors d; using eqn. 7, but do not
update 7, if it is from the previous segment

Step 6: re-estimate the event functions using eqn. 6; if the results
have converged or have been re-estimated a certain number of
times, go to step 7; if not, go back to step S

Step 7: store the events for the current segment; to analyse the
next segment, set (1) « CJ - 1), CQQ2) « QVJ), @, « a,.,, d, &
d,, and J « 3, then go back to step 2

Experiments: We have designed two separate experiments to meas-
ure the performance of the interpolation and quantisation based
on RTD. We used prediction gain to measure the interpolation
performance and spectral distortion (SD) to measure the quantisa-
tion performance [5]. During these experiments, we used the
weighted squared Euclidean distortion of the LSF parameters as
-described in [4] and we derived eqns. 6, 7 and 9 based on it. As the
speech corpus for these experiments, we chose 1890 phonetically-
diverse sentences (SI set) from the TIMIT database and used 504
sentences for testing and 1386 for training. A 10th order LPC
analysis was performed using the autocorrelation method with a
30ms Hamming window which was shifted every 20ms. Finally,
the LPC parameters were converted into the LSF parameters.

For the 221586 frame long training set, the average prediction
gain of the original LSF parameters was 9.09dB and the gain

“reduction caused by interpolation was only 0.15dB when we used
6 = 0.6. In this case, the average event occurrence frequency was
18.16Hz. An event function ¢;(n) can be represented by its length
() = (G + 1) — C(j) and shape in [C(j), C(j + 1)]. The maximum
event length was 11 frames, so we coded p(j) with four bits except
for p(j) = 1 with three bits, ‘000°. For quantising the shape, we
first took 10 equidistant samples of the event function by interpo-
lation and then vector-quantised them. A vector quantiser for the
shape of an event function and 10 scalar quantisers for the event
vector dLSFs were trained using the interpolation results of the
training set.

Finally, we quantised the events obtained from the RTD of the
83910 frame long test set, varying the bit allocations. We meas-
ured the average SD between the interpolated LSF parameters and
the quantised parameters. Table 1 shows the interpolated LSF
parameters are quantised transparently [5] when 33 bits are used
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for an event vector and 6 bits for the shape of an event function.
Although the overall SD caused by both interpolation and quanti-
sation was 1.74dB and could not satisfy the conditions for trans-
parent coding, most reconstructed speech sentences could not be
easily distinguished from the original sentences during the infor-
mal listening test. Table 2 shows average bit rates for this configu-
ration.

Table 1: Performance of quantiser for interpolated LSF vector

trajectory
Bit allocation SD Outliers
dLSF SQ |¢ shape VQ 2-4dB > 4dB
dB % %

31bit 4 bit 1.126 4.89 0.16
(3,3,3,3.4, Sbit 1.070 3.97 0.16
3,3,3,3,3) 6bit 1.011 3.25 0.15

32 bit 4 bit 1.082 3.60 0.08
(3,3,3,3.4, 5bit 1.023 2.86 0.07
3.4.3,3,3) 6bit 0.963 217 0.07

33bit 4bit 1.054 292 0.04
(3,3,3,3.4, 5bit 0.994 2.20 0.04
3,4,34,3) 6bit 0.933 1.57 0.03

Table 2: Bit rate of proposed quantiser

dLSF Event function

Frequency| Total

SQ Position | Shape
Hz bit/s
piH>1 33 4 6 14.04 604
=1 33 3 0 412 149

Total 753bit/s

Conclusion and discussion: We have performed a restricted tempo-
ral decomposition of the LSF parameters and presented a quanti-
sation method for the resulting events. As a result, we were able to
interpolate an LSF vector trajectory with ~ 18 events/s while the
loss of prediction gain was only 0.15dB. We were able to transpar-
ently quantise the events at 753bit/s. The bit rate may be further
reduced if we use a vector quantiser for event vectors. While the
overall distortion could not satisfy the condition for transparent
coding, the quality of reconstructed speech is sufficient for a low-
bit-rate vocoder. The coding delay of this method was nonuniform
because the event length varied. The average event length was
55ms and its standard deviation was 29.45ms while interpolating
the training set. The proposed method reduces the computational
complexity of the temporal decomposition methods described in [1
— 3] because it does not make use of singular value decomposition
nor adaptive Gauss-Seidel iterations in estimating event functions.
Moreover, the error decreases monotonically and converges rap-
idly to a local minimum since eqns. 6, 7 and 9 lead to stepwise
optimal solutions, so re-estimating five times is sufficient for for
the interpolation error to converge.

The proposed method differs from straightforward interpolation
methods in several ways: in the re-estimation of event vectors, in
the iterative optimisation, and in the adaptive selection of update
points. In fact, these differences are taken from the temporal
decomposition method. Furthermore, the estimated events also
have desirable properties such as time localisation and correspond-
ence to speech events, which the temporal decomposition aims for.
Hence, the proposed method can be considered as a reasonable
adaptation of temporal decomposition for LSF parameters.
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Evaluation of extinction ratio induced
performance penalty due to interferometric
noise

J.E. Mitchell, P.M. Lane and J.J. O’Reilly

A rigorous assessment of the impact of finite extinction ratio in
systems corrupted with interferometric noise is presented. In
contrast to previous work it is shown that the extinction ratio has
minimal effect on the overall crosstalk tolerance, with signal-
crosstalk beating between data ‘1’ terms being dominant.

Introduction: Interferometric crosstalk has long been considered a
major factor in the overall performance limit of multiwavelength
optical networks. Interferometric noise (IN) is formed in such sys-
tems owing to imperfect isolation in routing and demultiplexing
components, allowing other signals of nominally the same wave-
length to fall on the receiver photodiode with the desired signal.
The interaction of these signals causes the generation of beat com-
ponents that cannot be characterised using the same methods
applied to traditional crosstalk power. In recent years a number of
advances have been made in the accuracy of the statistical models
used to describe this phenomenon; however, to date, most assess-
ments have used variations on Gaussian approximation (GA) to
evaluate this effect. It has been reported on numerous occasions
that the use of Gaussian statistics is not well suited to the study of
IN unless the system is such that the central limit theorem can be
relied on, ie. that there is a large number of interfering terms
[1, 2]. The effect of finite extinction ratio is present in virtually
every real system; however, assessments of its contribution to any
system penalty have only made use of Gaussian statistics without
fully considering the obvious impact of symbol conditioning [3].

A simple form of GA evaluates the power penalty by following
a procedure similar to that used in [4], although it may be modi-
fied for finite extinction ratio, as demonstrated in [S]. In this Let-
ter we assess IN by considering the actual composite statistics of
all noise contributions, including individually the effect of each
beat term due to the different symbol combinations. To effect this,
we use the modified Chernoff bound (MCB) method [6] in view of
its ease of formulation and computational efficiency.

Interferometric beat noise: The signal-crosstalk beat noise compo-
nent at the receiver can be described as )

N

i = 2P, me(t)ms(t)v/e cos[(ws — wilt + b5 (t) — ¢i(?)]
i=1

1

where P, is the optical signal power, ¢, the relative crosstalk power
(= P/P,), s and i as subscripts denote expected and interfering sig-
nal, respectively, w is the optical frequency, ¢(¢) the optical phase,
N the number of interferers and m(f) represents the binary sym-
bols forming the message: m(z) € {r, 1}(0 < r < 1) with r account-
ing for the extinction ratio factor. If we consider the wavelengths
to be nominally identical, the most likely scenario in a dense
WDM system, we see that the term inside the summation in eqn. 1
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is of the form ccos(9), the probability density function (PDF) of
which is the well-known arc-sinusoidal function. From this the
moment generating function (MGF) is readily obtained since the
addition of independent random variables corresponds to the mul-
tiplication of MGFs [7]:

N
Min(s) = HIo(as) 2

where Iy(e) is the modified Bessel function, first kind, zero-order.
Laser biasing or modulator extinction constraints will inevitably
lead to a finite extinction ratio in practical optical systems. ‘Tradi-
tional’ evaluation methods consider this a simple degradation of
the eye opening by including a factor of (1 — r)/(1 + r) in the Q
value, while systems corrupted by IN will, in addition, have terms
owing to the signal-crosstalk beating. In a model with perfect
extinction in all components it is assumed that a datum ‘0’ is sym-
bolised by the complete absence of light, which means that no
beating will occur if either the signal or crosstalk has a datum of
‘0’. Now we must consider that a datum 0’ is represented by a sig-
nal power of rP,, allowing the beating between the signal and each
interferer to be governed by one of four possible r.v.s dependent
on the symbol conditions.

Impact of finite extinction ratio: Here we compare two evaluation
methods: the Gaussian approximation (GA) method (decision
threshold non-optimised) and the modified Chernoff bound
(MCB) method, defined as eqns 3 and 4, respectively:

1 i, — D 1 D—ri
BER ~ -Q | ——2—— ] + =@ [———” ] 3)
2 |:v‘75+‘7?1v1 27| VoE +0oine
Mg(s) —sD —s(ipy—
, < —— 2 Moy (s)el =P + M s(»—=D)
- 2sonm[ 1o)(8)e 1(s)e ]

s>0 (4)

where D represents the decision threshold, 62 is the thermal noise
variance, with 6%, and 6%, the beat noise variance for signals
with values of ‘1 and ‘0’, respectively. The performance degrada-
tion is evaluated at various extinction ratios including -8dB (ITU-
T Recommendation G.957(7/95)). Previous work using GA with
an optimised decision threshold has suggested that the inclusion of
a finite extinction ratio affects the maximum tolerable crosstalk
level [3].

6

power penalty,dB

crosstalk isolation,dB

Fig. 1 Power penalty against crosstalk isolation calculated using Gaus-
sian approximation and modified Chernoff bound methods

(i) Gaussian approximation
(ii) rigorous evaluation

The calculation using the MCD method, using an average
power decision threshold, as shown in Fig. 1, demonstrates that
finite extinction ratio inherently causes eye closure, as can be seen
by the marked power penalty floor in keeping with establish the-
ory [8]. However, we find now that there is a single crosstalk limit
regardless of the extinction ratio. From this we deduce that even
though additional beating terms are introduced by the finite
extinction ratio, the beating of the two data values of 1’ still dom-
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